RhoA and rho kinase regulate the epithelial Na+/H+ exchanger NHE3. Role of myosin light chain phosphorylation.

نویسندگان

  • K Szászi
  • K Kurashima
  • A Kapus
  • A Paulsen
  • K Kaibuchi
  • S Grinstein
  • J Orlowski
چکیده

The activity of the Na(+)/H(+) exchanger NHE3 isoform, which is found primarily in epithelial cells, is sensitive to the state of actin polymerization. Actin assembly, in turn, is controlled by members of the small GTPase Rho family, namely Rac1, Cdc42, and RhoA. We therefore investigated the possible role of these GTPases in modulating NHE3 activity. Cells stably expressing NHE3 were transiently transfected with inhibitory forms of Rac1, Cdc42, or RhoA and transport activity was assessed using microfluorimetry. NHE3 activity was not adversely affected by either dominant-negative Rac1 or Cdc42. By contrast, the inhibitory form of RhoA greatly depressed NHE3 activity, without noticeably altering its subcellular distribution. NHE3 activity was equally reduced by inhibiting p160 Rho-associated kinase I (ROK), a downstream effector of RhoA, with the selective antagonist Y-27632 and a dominant-negative form of ROK. Furthermore, inhibition of ROK reduced the phosphorylation of myosin light chain. A comparable net dephosphorylation was achieved by the myosin light chain kinase inhibitor ML9, which similarly inhibited NHE3. These data suggest that optimal NHE3 activity requires a functional RhoA-ROK signaling pathway which acts, at least partly, by controlling the phosphorylation of myosin light chain and, ultimately, the organization of the actin cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyamines regulate Rho-kinase and myosin phosphorylation during intestinal epithelial restitution.

Polyamines are required for the early phase of mucosal restitution that occurs as a consequence of epithelial cell migration. Our previous studies have shown that polyamines increase RhoA activity by elevating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) through controlling voltage-gated K(+) channel expression and membrane potential (E(m)) during intestinal epithelial restitution. The c...

متن کامل

Lysophosphatidic acid 5 receptor induces activation of Na(+)/H(+) exchanger 3 via apical epidermal growth factor receptor in intestinal epithelial cells.

Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe c...

متن کامل

Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo.

Acute T cell-mediated diarrhea is associated with increased mucosal expression of proinflammatory cytokines, including the TNF superfamily members TNF and LIGHT. While we have previously shown that epithelial barrier dysfunction induced by myosin light chain kinase (MLCK) is required for the development of diarrhea, MLCK inhibition does not completely restore water absorption. In contrast, alth...

متن کامل

Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells.

Myosin-based contractility plays important roles in the regulation of epithelial functions, particularly paracellular permeability. However, the triggering factors and the signaling pathways that control epithelial myosin light chain (MLC) phosphorylation have not been elucidated. Herein we show that plasma membrane depolarization provoked by distinct means, including high extracellular K(+), t...

متن کامل

The mechanism by which RhoA regulates vascular reactivity after hemorrhagic shock in rats.

RhoA, an important member of the Rho family of GTPases, has been implicated in many cellular processes. Our pilot study found that RhoA participated in the regulation of vascular reactivity after shock, but the mechanism was incompletely understood. Whether RhoA regulates vascular reactivity through the Rho kinase-myosin light-chain phosphatase (MLCP) and Rac1-p21-activated kinase (PAK)-myosin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 37  شماره 

صفحات  -

تاریخ انتشار 2000